
 The Next Wave | Vol. 20 No. 4 | 2014

A
graph is a group of associated
objects represented by a network
of vertices and edges, where a

P a u l B u r k h a r d t

Our brain is a Big Graph, a
network of trillions of neurons
connected by synapses,
whose topology shares
common characteristics with
other graphs, such as social
networks. Can we unlock
the secrets of our neural
processing using graph theory
and Big Data technologies?
(Image reprinted from [1].)

vertex is an object and an edge connects a vertex to another vertex to denote their pairwise
relationship. Graphs arise naturally from physical networks, such as the roads and highways
connecting our cities, the power grid that transfers electricity to our homes, and the �ight
paths between airports (see �gure 1). Biological systems also exhibit graphs, such as the
interactions between proteins (see �gure 2) and the conformational topology of polymers.
The neurons in our brain send signals over synapses, forming one of the largest natural
networks in existence. We also engineer networks from the minute electronic circuitry in
microprocessors to the massive digital network of the Internet, displayed as a graph in �gure
3, facilitating communication between computers all over the world.

FIGURE 1. Graphs arise naturally from physical
networks, such as the �ight paths between airports.
(Design: Thirst. Project: O’Hare Terminal 5 Mezzanine
Mural. Client: West�eld Development. Illustration built
using Processing Data by http://OpenFlights.org [2].)

1

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

FIGURE 2. (a) Biological systems also exhibit graphs, such as the interaction between
proteins. Above is a yeast protein interactome. (Graph created with Gephi, http://
www.gephi.org.) (b) Above is a Mycobacterium tuberculosis interactome. (Image
reprinted from [3].)

FIGURE 3. We engineer networks, such as the digital
network of the Internet, displayed above as a graph.
(Image from [4].)

Graphs are everywhere

A graph can also be constructed from abstract and
less obvious sets of relationships. For example,
this article can be visualized as a graph of words.
While reading this sentence, connect any pair of
words co-occurring in a span of four words but
counting only nouns and verbs. Our simple word
graph in �gure 4(a) reveals a number of cliques
with a maximum size of four vertices. A clique is
a group of vertices that are all pairwise connected,
indicating the vertices are closely associated be-
cause each vertex is directly connected to any other.
An interesting structure emerges where two of the
largest cliques around the predicates connect and
counting share the words vertex, thus tying any
pair of vertices in this structure by two edges or
less (see �gure 4(b)). We can infer that connecting
pairs of words in the sentence is closely associated
with counting nouns and verbs, but reading is not
closely associated to nouns and verbs in this context
because reading is separated by no less than three
edges to either nouns or verbs , despite the obvious
grammatical relationship.

Word co-occurrence graphs are an abstract
representation of written language that can help ex-
pose semantic meaning by machines. Another less
obvious utilization of graphs is solving the short-
est superstring problem—the task of creating the
shortest string that contains each substring from a
set of n substrings. If the length of the superstring
did not matter, then the problem is trivially solved

by concatenating all the
substrings. Constructing the
shortest superstring that con-
tains each substring exactly
once is much harder but has
applications in data compres-
sion and genome assembly.
A brute-force method that
shortens a superstring by the
overlap between substrings
must do so for all n! possible
superstrings, which quickly
becomes intractable (e.g., 15!
is over one trillion).

�e shortest superstring
problem can be solved by
creating a graph where

vertices are the n substrings and all pairs of verti-
ces are connected by edges with a weight given by
the longest su�x of one vertex that is equal to the
pre�x of the other and a direction in that order,
then �nding a Hamiltonian path that visits each
vertex once while maximizing the overlap (also
known as the Traveling Salesman Path Problem).
But �nding a Hamiltonian path is in the class of
NP-complete (i.e., nondeterministic polynomial

2

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

reading

connect

sentence

words

co-occurring

pair

counting

span nouns

verbs

(a) Word graph

connect pair

sentence words counting

nouns verbs

(b) Word cliques

FIGURE 4. (a) Texts can be visualized as a graph of words, such as the graph above of the co-occurrence of words in a sen-
tence from this article. (b) These word cliques (a clique is a group of vertices that are all pairwise connected) from �gure 4(a)
reveal associations between words. Here, they reveal that connecting pairs of words in the sentence is closely associated with
counting nouns and verbs.

time-complete) problems for which e�cient solu-
tions are not known.

A special case where each substring has length
k over an alphabet of size n is more tractable. �is
problem can be solved by constructing a de Bruijn
graph where each k-length substring is an edge that
begins from its (k-1)-length pre�x and ends at its
(k-1)-length su�x, then finding a Eulerian cycle—a
path that traverses each edge exactly once before
returning to the origin. (Eulerian cycles are inspired
by Euler’s 1735 solution to crossing the Seven
Bridges of Königsberg over the river Pregel which
started the study of graph theory.) �e de Bruijn
graph in �gure 5 admits a Eulerian cycle, just follow
the labeled edges in order and concatenate the first
symbol in each edge to construct the cyclic super-
string 0000110010111101, representing all sixteen
k=4 length substrings for an alphabet of 0 and 1.
�e graph by de Bruijn is an important method
used in DNA sequencing where possibly billions of
k-mers (i.e., substrings of k-length) must be assem-
bled to construct the final genome sequence.

0011

1100

01101001

0101

0100 1101

1010

0010 1011
0001

0000

1000 1110

0111

1111

001 011

000 111

100 110

3

2

6

7

8

5

4

9

16 12
1315

14

10

111 010 101

FIGURE 5. This de Bruijn graph admits a Eulerian cycle—a
path that traverses each edge exactly once before return-
ing to the origin. This type of graph can be used to solve
the shortest superstring problem and is used in DNA
sequencing. (Image reprinted by permission from Macmillan
Publishers Ltd: Nature Biotechnology, available at http://www.
nature.com/nbt/index.html, Compeau PE, Pevzner PA, Tesler
G, “How to apply de Bruijn graphs to genome assembly,” doi:
10.1038/nbt.2023, �g. 2, 2011 [5].)

3

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

What can graphs tell us?

A graph can be a beautifully complex and intrigu-
ing topology of interconnected pathways, alluding
to hidden meaning and secrets available only to the
intrepid willing to walk the edges. O�en the graph
resembles little more than a hair ball, such as the
graph of the World Wide Web in �gure 6, obfus-
cating insight by the seemingly infinite number of
circuitous paths. But Google’s search engine, for ex-
ample, is based roughly on the concept of randomly
following links from one web page to another in a
gigantic web graph, ranking each page according
to the popularity of the pages that link to it, and
returning surprisingly accurate search results.

Social interactions can be symbolized by graphs
(e.g., the Twitter graph in �gure 7) and inspire col-
loquial phrases such as small world and six degrees
of separation, indicating that we are all connected
by just a few associates. �e topology of our social
networks was discovered to be more resistant to
failure when nodes or links are removed, which
can result in the dissociation of communities
or the disruption of pathways, and to be better

FIGURE 6. Some graphs, such as this World Wide Web graph,
are so complex that they resemble little more than a hair
ball. (Image from [6].)

FIGURE 7. Social interactions, like those on Twitter, can be
symbolized by graphs. (Graph created with Gephi, http://
www.gephi.org.)

at disseminating information than other graph
topologies [7, 8]. �ese small-world graphs have
more cliques and shorter paths, but it is the severe
inequities among the vertices that explain why ru-
mors and disease quickly spread throughout these
networks. Because a few vertices incur the vast
majority of edges, acting as hubs, many low-degree
vertices with only a few direct neighbors are able to
exchange information easily [8].

Such small-world graphs can be found in many
real-world networks. For example, the hub struc-
ture can be found in the network of US airports
where, according to 2012 data, 80% of passengers
are serviced by only 50 out of nearly 20,000 airports
[9, 10]. �e small-world graph properties can also
be found in neural networks, such as that of the
soil nematode Caenorhabditis elegans (shown in
�gure 8), implying these graph properties have an
evolutionary benefit [7]. �us, out of complex, un-
ordered, and decentralized interactions, logic and
purpose arise. Small-world graphs develop natu-
rally without any centralized control or predefined
order but rather from preferential attachment where
popular nodes become more popular over time—
just as our network of roads started as decentralized
clusters localized to cities and towns, eventually
connecting to other clusters creating hubs around
the big cities.

Graphs are truly everywhere and can be liter-
ally constructed from any data. But graphs do

4

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

FIGURE 8. Small-world graph properties can also be found
in neural networks, such as this one of the soil nematode
Caenorhabditis elegans, implying that these graph properties
have an evolutionary benefit [7]. (Graph created with Gephi,
http://www.gephi.org.)

not by themselves add information; instead, they
help to organize data as a collection of (key, value)
pairs that e�ectively encode binary relationships
which, when analyzed in whole, can reveal surpris-
ing insight to complex interactions. Algorithms
that discover cues from navigating the graph have
been studied since the days of Euler and the Seven
Bridges of Königsberg (only two bridges from his
day still stand) nearly three centuries ago. Searching
a complex network is an exemplary application of
graph algorithms and one familiar to us each time
we use GPS navigation to compute the best route
from one location to another. But graph algorithms
are computationally challenging because of their
irregular structure and combinatorial expansion.

One of the simplest data structures is a binary
tree in which each node begets two more nodes.
�e branches of this graph expand in powers of
two, so a�er just 16 generations, there are already
131,071 nodes, and another 16 generations later,
there are over eight billion nodes. In most graphs,
the branches are not regular and expand much
more quickly. In many real-world graphs, the
disparity in degree distribution creates significant
resource contention during computation. �e
powerful analytic capability of graph algorithms has

motivated the design for e�cient parallel process-
ing of graphs in high-performance computing
(HPC) systems. Fields such as genomics, molecular
dynamics, and data science are utilizing many of
these HPC graph algorithms to analyze their large
and complex data sets. �e rising tide of Big Data
has created interest in applying graph-theoretic
approaches in these fields and many others. But as
data sets get larger, the challenges to graph process-
ing increase to a point where even the most power-
ful HPC systems will buckle under the task of graph
analysis on Big Data.

Big Graphs

�e introduction to Big Data gives a sense of the
massive scale of some of these data sets which
would create very big graphs. On any given day
the web contains about 50 billion web pages (cf.
http://www.worldwidewebsize.com), and if we
estimate an average of 20 URL links per page, the
web graph would have one trillion edges. In 2008,
Google had already claimed to have indexed a total
of one trillion pages. In October of 2012, Facebook
announced that their social media site had reached
one billion active monthly users, connecting one
out of seven people on the planet, and since 2004,
there have been 140.3 billion friend connections.
In early 2013, Facebook announced their Facebook
Graph Search to harness the Big Data graph in-
formation collected in their social network which
could include the more than one trillion “likes”
made by their users.

�e computational resources for searching the
web or the Facebook network are hidden in secret
data centers built by Google and Facebook. But
in 2010, Google published their Pregel paper for
processing large-scale graphs [11]. In this paper,
Google described their distributed-memory ap-
proach, which follows the bulk synchronous parallel
(BSP) model of computing rather than the parallel
random access machine (PRAM) model tradition-
ally favored for graph algorithms. A distributed-
memory system is a cluster of machines, each with
their own private memory, and data residing in the
memory of one machine must be explicitly commu-
nicated to another machine. Increasing the memory
of such a distributed-memory system only requires

5

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

connecting more machines. In contrast, a shared-
memory system has a single pool of memory that
is accessible to all machines, while each machine
also has a small portion of private memory. Com-
municating data changes to all machines, therefore,
simply requires updating the data in the pool. But
a protocol must be enforced to ensure data remains
consistent, especially when one machine has loaded
data into its own private cache but, before it can
process that data and replace the modifications in
the pool, another may have already made changes.
�is cache-coherency protocol makes it much more
di�cult to scale shared-memory computers.

Another limiting factor is that a central process-
ing unit (CPU) has a memory address limit. For ex-
ample; the Intel Xeon E5 has a 46-bit address space
[12]; therefore, a system comprised of these CPUs
can have no more than 64 terabytes (TB) of global-
ly-shared memory. It is not surprising that Google’s
Pregel favors the distributed-memory model. But
the Big Graph challenge does not end here.

The problem with big brains

One of the largest physical networks is our own
neural network, the human connectome, depicted

in �gure 9. If we count neurons as vertices and syn-
apses as edges, there are approximately 10 trillion
vertices and 100 trillion edges in the human brain
graph. If each edge were stored in 16 bytes, our
brain graph would occupy over one petabyte (PB)—
that exceeds the practical memory capacity of any
computing platform today. As described below,
the largest memory capacity in a supercomputer is
1.5 PB.

The human brain graph stored in bytes would occupy

over one petabyte. How large is that?

(1,024)3 bytes = 1 gigabyte (GB)

1,024 GB = 1 terabyte (TB)

1,024 TB = 1 petabyte (PB)

Leaving the memory issue aside, if we traversed
edges at a pace of one every millionth of a second
(microsecond) it would us take over three years
to visit each neuron without ever retracing a step.
�is rate of one million edges per second is clearly
impractical, but considering the fastest network
technologies available have microsecond latency
between one network interface to another, it will re-
quire careful implementation on a many-processor

FIGURE 9. One of the largest physical networks is our own neural network, the human connectome. Copyright © 2011
Gerhard, Daducci, Lemkaddem, Meuli, Thiran, Hagmann [13].

6

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

supercomputer to overcome the latency costs
incurred by traversing all the edges.

A typical CPU, the “brain” we are familiar with
in our personal computers, can operate at gigahertz
(GHz) frequency where the CPU can perform an
instruction every nanosecond (ns) or a billionth of
a second; in one microsecond, the CPU will have
cycled 1,000 times. �ere is also a speed limitation
forced upon us by physics (despite recent excite-
ment in the now debunked “faster-than-light” neu-
trinos) that light travels approximately 0.3 meters

every nanosecond. A graph with trillions of edges
will necessarily be distributed across many com-
pute racks so the distance between racks at the far
ends will be a factor. �is is the paradox—scaling a
system to keep up with increasing data can make it
more di�cult to process that data!

As graphs scale with Big Data, increasing the
physical memory to fit the graph may not always
be practical or environmentally feasible. �e
Cray Titan supercomputer installed at Oak Ridge
National Laboratory was the world’s most powerful
supercomputer in 2012 according to the Top500.org
November list of that year [14]. �e $97 million Ti-
tan requires 8.2 megawatts (MW) of power [14] and
over 4,300 square feet of space—an NBA basketball
court is 4,700 square feet—but with a total memory
capacity of 710 TB, it does not have enough mem-
ory to store the human connectome. �e second
most powerful supercomputer on the November
2012 list, the IBM Sequoia installed at Lawrence
Livermore National Laboratory, requires 7.9 MW of
power [14] and over 3,000 square feet of space. �e
Sequoia has 1.5 PB of memory, just enough to store
the human connectome, but leaves no memory for
applications that could analyze the brain graph. At
a hypothetical 10 cents per kilowatt-hour, it would
cost about $7 million per year to power either of
these supercomputers ($100⁄

MW
x 8,760 h⁄

y
).

Idle time on these systems is very costly, but en-
suring all CPUs are performing useful work when
processing a Big Graph is a daunting challenge. A
single Sequoia 1.6 GHz CPU can perform 204.8
operations per nanosecond (i.e., 1.6 cycles/ns × 16
cores × 8 operations/cycle per core) [15], but if it
is requesting data from another CPU that is con-
nected 10 meters away, at least 33 ns will pass—due
to the speed of light limit—before it can perform

useful work. �at is a waste of 6,831 operations for
just one CPU; there are 98,304 CPUs in Sequoia!

Graphs at Big Data scales will demand substan-
tial system resources for processing and storing, but
reality forces limitations on budget, which includes
the up-front cost of an installation, lifecycle support
and maintenance, and the power required to keep
the lights blinking, disks whirring, and fans hum-
ming. �ese systems will inevitably face hardware
and so�ware failures, making fault tolerance more
imperative because restarting an algorithm on a
petabyte or larger graph is very costly in time and
resources. We need new approaches if we are to
analyze Big Graphs.

Exception! Out of memory

In addition to the limitations of power, space, and
cooling, there are hardware constraints to scaling
the memory capacity of a system. Data is processed
by entering through the CPU pins that interface
the CPU to the memory bus. �e number of pins
is physically limited, which results in a memory
bandwidth wall. In addition, a memory controller
that mediates the data between main memory and
the CPU has a fixed number of memory chan-
nels for transferring data because of the electrical
constraints in the circuitry. �ese constraints force
a hard ceiling on the maximum memory capac-
ity for a processing unit. Using the Intel Xeon E5
again as an example, it supports four channels with
each channel supporting three memory slots for a
total of 12 slots per CPU, and at 8 GB per slot [12],
such a dual Xeon motherboard would have 192 GB
of memory.

An adjacency list is a common graph data
structure that uses an array for storing vertices and
a doubly-linked list for storing the adjacency or
neighborhood of each vertex. �is adjacency list
requires on order of n + 4m memory locations for
n vertices and m edges, and for large graphs, each
location would require 8 bytes. To store the brain
graph entirely in memory using the adjacency list
(using 100 trillion = 2m), a system would need over
8,000 of these Intel Xeon E5 motherboards and
204 racks to house them; there are 200 racks in the
Titan supercomputer. �e cost in memory alone for
this system would be almost $20 million at $100 per

7

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

memory slot. �e 96-rack Sequoia supercomputer
supports a maximum of 64 GB of memory per CPU
with 1,024 CPUs per rack, which will be useful in
the event that we discover a life form with a 6 PB
brain graph . . . but no bigger!

If the graph cannot fit in the aggregate memory,
it cannot be processed. �e conventional solution is
to increase the system size (i.e., add more compute
boards), but that will exacerbate the latency costs,
making it harder to send data from CPU to CPU to
keep them busy. Bottom line: It will be di�cult to
scale memory in this manner if data continues to
increase at exponential rates.

We can store and process Big Graphs on mod-
est computing clusters where the graph data itself
resides on disk. If the graph gets too big, then more
or bigger disks can be easily added since disks have
much greater data capacity than memory modules
and many more drives can be attached (possibly
over 100 with port multipliers). But accessing data
on disks can be one million times slower than ac-
cessing it in memory. Algorithms for graphs on disk
must amortize the higher latency of disk access by
increasing the throughput of data. �ese algorithms
minimize the amount of random access to avoid a
frenzy of mechanical movement from disk heads
seeking for data sectors. To do this e�ectively, the
algorithms organize data in large sequential blocks
because disk heads can e�ciently scan data in this
manner. �is external memory (i.e., out-of-core)
processing was first developed in the 1980s to cope
with the growing disparity in both cost and perfor-
mance between disk and memory, so the problem
of insu�cient memory is not new [16]. Process-
ing graphs too big to fit in memory appeared
in the 1990s as streaming [17] and parallel disk
model [18, 19] applications.

Big Graphs in the cloud

Open-source cloud technologies inspired by Google
publications [20, 21] are being leveraged to solve
Big Data problems in both industry and govern-
ment. �e Apache Accumulo project (http://
accumulo.apache.org), originally an internal
research project at the National Security Agency
(NSA), can be used as a graph database that can
scale with disk capacity while providing security,
availability, and fault tolerance. A Big Graph can

be stored in Accumulo as a collection of sorted
edges and queried using the Accumulo interfaces
for scanning records. �e Hadoop MapReduce
(http: //hadoop.apache.org) programming frame-
work can be combined with Accumulo for added
processing power. A straightforward approach
is to filter out edges from Accumulo (i.e., ex-
tract a subgraph) which can then be analyzed by
MapReduce applications.

Storing a graph as edges is natural in (key, value)
repositories, like Accumulo, since an edge is a ver-
tex pair (i.e., the end points). Tables in Accumulo
are distributed as a set of tablets, o�en many tablets
on a single host in a cluster of multiple hosts. Each
table is stored on disk in the Hadoop Distributed
File System (HDFS), which replicates all data across
the cluster to tolerate faults. Accumulo keeps track
of the location of all tablets and can rebalance
the distribution on demand. �e tablets can mi-
grate from one host to another depending on the
load distribution or host failures. �e (key, value)
records are sorted in each tablet, and tablets can be
grouped dynamically so scans can e�ciently access
only relevant subsets of data.

In real-world graphs such as the social and neu-
ral networks discussed earlier, the degree for a few
vertices can be much larger than the rest, resulting
in skew distribution of tablets. �is skew creates a
hot spot or bottleneck since the majority of queries
will access only a few of the tablets. Additionally,
adjacencies would be larger for Big Graphs, increas-
ing the time needed to scan all entries in a tablet.
In Accumulo, a large adjacency can be distributed
across multiple tablets to enable greater parallel
processing, and the tablet sizes can be controlled
for better latency and less resource contention. �e
locality can be set—that is, tablets can be grouped
based on types of edges (i.e., scan blue versus green
edges)—to skip over data that is not relevant to
the query.

Updating edges in the Accumulo edge table can
be accomplished using the online ingest interface
or the o�ine bulk load operation. �e latter, as
the name suggests, is reserved for large, wholesale
updates that are completed in bulk. �e ingest
interface provides a timely, low-latency mechanism
which inserts updates that are globally sorted in
periodic compaction operations; deleted edges are

8

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

removed a�er the compaction step. In the event
that a tablet fails before sorting its entries, the up-
dates can be recovered from the write-ahead logs.

�e MapReduce programming model is e�ective
for distributed problems that can be decomposed
into many independent tasks. �e map step pro-
cesses input data into a collection of (key, value)
pairs which are then sorted and combined in the re-
duce step. By minimizing interdependency between
processing elements, the amount of communication
over the network is decreased and more time can
be spent on actual processing—maximizing the
computation-to-communication ratio. Increasing
the number of compute resources should propor-
tionately decrease the processing time to just about
the time required to communicate data between the
map and reduce steps.

�e canonical example of an embarrassingly
parallel MapReduce algorithm that minimizes
communication is the simple word-count pat-
tern described in the seminal MapReduce article
by Google [21]. �e algorithm counts the occur-
rence of every word in a large corpus of documents
where each document is split into blocks of lines
and distributed to many processing elements. �e
blocks are processed simultaneously by many inde-
pendent map tasks which output (word, 1) pairs for
each word. �ese pairs are collected and summed
in the reduce tasks to calculate the count for each
word. You could run the MapReduce word-count
algorithm on this article to output how many times
the words “big,” “data,” and “graph” were used, but
the e�ectiveness of MapReduce is better realized
on very large data sets where the latency from disk
access can be amortized.

Developing e�ective graph algorithms in the
MapReduce programming model requires “think-
ing in MapReduce,” which may seem unnatural
at first. But this recasting of conventional graph
algorithms into counting (key, value) pairs in
MapReduce can make it possible to analyze mas-
sive graphs residing on disk [22, 23] by exploit-
ing locality. �e complexity involved in explicitly
communicating and sharing data to analyze large
graphs in BSP and PRAM systems is eliminated in
MapReduce because the framework manages the
data movement. �e result of this simpler pro-
gramming interface is that it can be more di�cult

to express e�cient algorithms in MapReduce. But
combining both Accumulo and MapReduce is
a practical approach for storing, extracting, and
analyzing Big Graphs. Here in the Computer and
Information Sciences Research Group at NSA, we
used this approach to demonstrate a breadth-�rst
search at brain scale, traversing more than 70 tril-
lion edges on a 1 PB graph [24]. �is brain-size
graph was nearly 20 times larger than the memory
capacity in our moderate-size cluster, yet the rate
of processing at this scale was the same at the
scale of just one trillion edges, which �t entirely
in memory.

About the author

Paul Burkhardt is a computer science researcher
in the Research Directorate at NSA. He received
his PhD from the University of Illinois at Urbana-
Champaign. His current research interests are
primarily focused on graph algorithms and Big
Data analytics.

References

[1] van den Heuvel MP, Kahn RS, Goñi J, Sporns O.
“High-cost, high-capacity backbone for global brain
communication.” Proccedings of the National Academy
of Sciences of the United Sates of America. 2012. doi:
10.1073/pnas.1203593109 (�gure 1(b)).

[2] �irst. Project: O’Hare Terminal 5 Mezzanine Mural.
Client: West�eld Development. Available at: http://
www.3st.com/work/terminal-5-murals. (Illustration
built using Processing Data by http://OpenFlights.org.)

[3] Vashisht R, Mondal AK, Jain A, Shah A, Vishnoi P,
Priyadarshini P, Bhattacharyya K, Rohira H, Ghat AG,
Passi A, et al. “Crowd sourcing a new paradigm for
interactome driven drug target identification in Myco-
bacterium tuberculosis.” PLoS ONE. 2013;7(7):1–11. doi:
10.1371/journal.pone.0039808 (�gure 2).

[4] Lyon B. �e Opte Project. Map 1 [accessed 2014
Mar]. 2005 Jan 16. Available at: http://www.opte.org/
maps/.

[5] Compeau PE, Pevzner PA, Tesler G. “How to
apply de Bruijn graphs to genome assembly.” Nature
Biotechnology. 2011;29(11):987–991. doi: 10.1038/
nbt.2023 (�gure 2).

[6] Hu Y. Matrix: SNAP/web-Google (bipartite graph
drawing) [updated 2014 Mar 12]. Available at: http://
www.cise.u	.edu/research/sparse/matrices/SNAP/web-
Google.html.

9

 The Next Wave | Vol. 20 No. 4 | 2014

 Big Graphs

[7] Watts DJ, Strogatz SH. “Collective dynamics of ‘small-
world’ networks.” Nature. 1998;393(6684):440–442. doi:
10.1038/30918.

[8] Doerr B, Fouz M, and Friedrich T. “Why rumors spread
so quickly in social networks.” Communications of the ACM.
2012;55(6):70–75. doi: 10.1145/2184319.2184338.

[9] Research and Innovative Technology Administration,
Bureau of Transportation Statistics, U.S. Department of
Transportation. “Table 1-44: Passengers boarded at the
top 50 U.S. airports (a).” National Transportation Statistics.
2012. Available at: http://www.rita.dot.gov/bts/sites/rita.dot.
gov.bts/�les/publications/national_transportation_statistics/
html/table_01_44.html.

[10] Federal Aviation Administration, U.S. Department of
Transportation. Administrator’s Fact Book. 2012 Jun. Avail-
able at: http://www.faa.gov/about/o�ce_org?headquarters_
o�ces/aba/admin_factbook/media/201206.pdf.

[11] Malewiz G, Austern M, Bik AJC, Dehnert J, Horn
I, Leiser N, Czajkowski G. “Pregel: A system for large-
scale graph processing.” In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10; 2010; Indianapolis, IN. p. 135–146. doi:
10.1145/1807167.1807184.

[12] Intel Corporation. “Intel Xeon processor E5-1600/E5-
2600/E5-4600 product families datasheet-volume 1.” 2012
May. Available at: http://www.intel.com/content/dam/www/
public/us/en/documents/datasheets/xeon-e5-1600-2600-
vol-1-datasheet.pdf.

[13] Gerhard S, Daducci A, Lemkaddem A, Meuli R, �iran
J, Hagmann P. “�e connectome viewer toolkit: An open
source framework to manage, analyze, and visualize con-
nectomes.” Frontiers in Neuroinformatics. 2011;5(3). doi:
10.3389/fninf.2011.00003.

[14] TOP500.org. November 2012. Available at: http://www.
top500.org/list/2012/11.

[15] Haring RA, Ohmacht M, Fox TW, Gschwind MK,
Satter�eld DL, Sugavanam K, Coteus PW, Heidelberger
P, Blumrich MA, Wisniewski RW, et al. “�e IBM Blue
Gene/Q compute chip.” IEEE Micro. 2012;32(2):48–60. doi:
10.1109/MM.2011.108.

[16] Munro JI, Paterson MS. “Selection and sorting
with limited storage.” �eoretical Computer Science.
1980;12(3):315–323. doi: 10.1016/0304-3975(80)90061-4.

[17] Henzinger MR, Raghavan P, and Rajagopalan S.
“Computing on data streams.” 1998. DEC Systems Research
Center. Technical Report No. 1998-011.

[18] Chiang YJ, Goodrich MT, Grove EF, Tamassia R,
Vengro� DE, and Vitter JS. “External-memory graph
algorithms.” In: Proceedings of the Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’95; 1995; San
Francisco, CA. p. 139–149.

[19] Vitter JS, Shriver E. “Algorithms for parallel memory, I:
Two-level memories.” Algorithmica. 1994;12(2–3):110–147.
doi: 10.1007/BF01185207.

[20] Chang F, Dean J, Ghemawat S,Hsieh WC, Wallach DA,
Burrows M, Chandra T, Fikes A, and Gruber RE. “Big-
table: A distributed storage system for structured data.” In:
Proceedings of the Seventh USENIX Symposium on Operating
System Design and Implementation, OSDI ’06; 2006; Seattle,
WA. p. 205–218. Available at: http://static.usenix.org/event/
osdi06/tech/change/chang_html/index.html.

[21] Dean J, Ghemawat S. “MapReduce: Simplified data
processing on large clusters.” In: Proceedings of the Sixth
Conference on Symposium on Operating Systems Design
and Implementation, OSDI ’04; 2004; San Francisco, CA. p.
137–150. Available at: http://research.google.com/archive/
mapreduce.html.

[22] Burkhardt P. “Asking hard graph questions.” 2014
Feb. US National Security Agency. Technical report No.:
NSA-RD-2014-050001v1.

[23] Cohen J. “Graph twiddling in a MapReduce world.”
Computing in Science and Engineering. 2009;11(4):29–41.
doi: 10.1109/MCSE.2009.120.

[24] Burkhardt P, Waring C. “An NSA big graph experi-
ment.” 2013 May. US National Security Agency. Technical
Report No. NSA-RD-2013-056001v1.

�e Next Wave is published to disseminate

technical advancements and research activities in

telecommunications and information technologies.

Mentions of company names or commercial products

do not imply endorsement by the US Government.

�is publication is available online at http://www.nsa.

gov/research/tnw/index.shtml. For more information,

please contact us at TNW@tycho.ncsc.mil.

10

0111011101110111011101110111011101110111011101110111011101110111011101

1001110011100111001110011100111001110011100111001110011100111001110010

01

0011001100110011001100110011001100110011001100110011001100110011001100

10

0111011101110111011101110111011101110111011101110111011101110111011101

10

0111011101110111011101110111011101110111011101110111011101110111011101

1001110011100111001110011100111001110011100111001110011100111001110010

01

0011001100110011001100110011001100110011001100110011001100110011001100

10

0111011101110111011101110111011101110111011101110111011101110111011101

10

